[Leetcode] Heaps & Priority Queue

Introduction

Priority Queue
https://www.youtube.com/watch?v=t0Cq6tVNRBA&list=PLUL4IRMCZfeXjd5AzDyry39Mf_pn1YLjQ

Time Complexity

  • Find min/max: O(1)
  • Delete min/max: O(log(n))
  • Insert: O(log(n))

Implementation
Python Queue: https://docs.python.org/3/library/queue.html#queue.PriorityQueue

1
2
3
4
5
6
from Queue import PriorityQueue

q = PriorityQueue()
q.put((1, item))
q.put((2, item2))
q.get() # remove and return

Python heapq: https://docs.python.org/2/library/heapq.html (use a priority queue to implemented a min heap)

1
2
3
4
5
6
from heapq import *

heap = [] # or list = [1,2,3], heap = heapify(list)
heappush(heap, item)
heappop(heap) # return min value
heappushpop(heap, item) # push item in the heap and then return the min value

347. Top K Frequent Elements

Leetcode: https://leetcode.com/problems/top-k-frequent-elements/description/

[Solution] Build a hashmap to record the frequency of numbers, and use MaxHeap to sort the elements in the HashMap

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
class Solution {
public List<Integer> topKFrequent(int[] nums, int k) {
// Construct a HashTale counting numbers
Map<Integer, Integer> dict = constructHashMap(nums);

// Use MaxHeap to keep sorted table
PriorityQueue<Map.Entry<Integer, Integer>> pq = new PriorityQueue<>(dict.size(),
new Comparator<Map.Entry<Integer, Integer>>() {
public int compare(Map.Entry<Integer, Integer> a, Map.Entry<Integer, Integer> b) {
return b.getValue() - a.getValue();
}
}
);

// Insert items from hashmap to priority queue
for (Map.Entry<Integer, Integer> entry: dict.entrySet()) {
pq.offer(entry);
}
List<Integer> res = new ArrayList<Integer>();
// get top k elements in pq
for (int i = 0; i < k; i++) {
Map.Entry<Integer, Integer> top = pq.poll();
res.add(top.getKey());
}
return res;
}

private Map<Integer, Integer> constructHashMap(int[] nums) {
Map<Integer, Integer> res = new HashMap<Integer, Integer>();
for (int num: nums) {
Integer cnt = res.get(num);
if (cnt == null) {
res.put(num, 1);
} else {
res.put(num, cnt + 1);
}
}
return res;
}
}

692. Top K Frequent Words

[Solution] Same as above

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
class Solution {
public List<String> topKFrequent(String[] words, int k) {
Map<String, Integer> dict = count(words);
// Use heap sort
PriorityQueue<Map.Entry<String,Integer>> pq = new PriorityQueue<>(dict.size(), new Comparator<Map.Entry<String, Integer>>() {
public int compare(Map.Entry<String, Integer> a, Map.Entry<String, Integer>b) {
if (b.getValue() == a.getValue()) {
return a.getKey().compareTo(b.getKey());
}
return b.getValue() - a.getValue();
}
});

// Insert entry into heap
for (Map.Entry<String, Integer> entry: dict.entrySet()) {
pq.offer(entry);
}

List<String> res = new ArrayList<String>();
for (int i = 0; i < k; i++) {
res.add(pq.poll().getKey());
}
return res;
}

private Map<String, Integer> count(String[] words) {
if (words.length == 0) return null;
Map<String, Integer> cnt = new HashMap<String, Integer>();
for (String word : words) {
Integer ch = cnt.get(word);
if (ch == null) {
cnt.put(word, 1);
} else {
cnt.put(word, ch+1);
}
}
return cnt;
}
}

295. Find Median from Data Stream

[Solution]:

  1. Use two heaps one min one max to store elements to the left of median and to the right of the median.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from heapq import *

class MedianFinder:

def __init__(self):
"""
initialize your data structure here.
"""
self.small = [] # max heap (reversed min heap)
self.big = [] # min heap


def addNum(self, num: int) -> None:
if len(self.small) == len(self.big):
heappush(self.small, -heappushpop(self.big, -num))
else:
heappush(self.big, -heappushpop(self.small, -num))


def findMedian(self) -> float:
if len(self.small) == len(self.big):
return (self.big[0] - self.small[0]) / 2
else:
return self.small[0]

Use heap to optimize sorting

23. Merge k Sorted Lists

Leetcode: https://leetcode.com/problems/merge-k-sorted-lists/

Time Complexity: O(nlogk), where k is the number of linked list.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
from heapq import *

def mergeKLists(self, lists):
head = ListNode(0)
cur = head
if not lists or len(lists) == 0:
return head.next
heap = []
min_lst = lists[0]
for lst in lists:
if lst:
heappush(heap, (lst.val, lst))
while heap:
val, node = heappop(heap)
cur.next = ListNode(val)
cur = cur.next
node = node.next
if node:
heappush(heap, (node.val, node))
return head.next

253. Meeting Rooms II

Leetcode: https://leetcode.com/problems/meeting-rooms-ii/

Solution: Use heap to optimize min function

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
from heapq import *

def minMeetingRooms(self, intervals):
"""
:type intervals: List[List[int]]
:rtype: int
"""
intervals.sort(key = lambda x: x[0])
if not intervals or len(intervals) == 0:
return 0
ends = []
for interval in intervals:
if ends and interval[0] >= ends[0]:
heappushpop(ends, interval[1])
else:
heappush(ends, interval[1])
return len(ends)