[Leetcode] DFS & BFS

301. Remove Invalid Parentheses [hard]

Leetcode: https://leetcode.com/problems/remove-invalid-parentheses/description/
Video: https://www.youtube.com/watch?v=2k_rS_u6EBk

[Solution]

  1. Check whether a input string is valid

    1
    2
    count(')') <= count('('), i < n - 1
    count('(') == count(')'), i = n - 1
  2. Compute min number of ‘(‘ and ‘)’ to remove unbalanced ‘)’ + unbalanced ‘(‘

  3. Try all possible ways to remove r‘)’s and l‘(‘s. Remove ‘)’ first to make prefix valid. (have to remove ‘)’ first to make sure prefix is )
    To avoid duplications: only remove the first parentheses if there are consecutive ones
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
class Solution {
public List<String> removeInvalidParentheses(String s) {
List<String> res = new ArrayList<String>();

// Calculate how many minimum ( and ) need to be removed
int l = 0;
int r = 0;

for (int i = 0; i < s.length(); i ++) {
if (s.charAt(i) == '(') {
l++;
}
if (s.charAt(i) == ')') {
if (l == 0) r++;
else l--;
}
}
dfs(r, l, 0, s, res);
return res;
}

private boolean isValid(String s) {
// Use a count to check if parenthesis is valid
int count = 0;
for (int i = 0; i < s.length(); i++) {
if (s.charAt(i) == '(') {
count++;
}
if (s.charAt(i) == ')') {
count--;
}
if (count < 0) { // ) comes before than (
return false;
}
}
return count == 0;
}

// l, r: number of left and right parenthesis to be removed, start: start
private void dfs(int r, int l, int start, String s, List<String> res) {
// base condition
if (r == 0 && l == 0) {
if (isValid(s)) {
res.add(s);
}
}

for (int i = start; i < s.length(); i++) {
// Only count first parenthesis if they appear in a consecutive sequence
if (i != start && s.charAt(i) == s.charAt(i - 1)) continue;

if (s.charAt(i) == '(' || s.charAt(i) == ')') {
StringBuilder str = new StringBuilder(s);
str.deleteCharAt(i);
if (r > 0) dfs(r - 1, l, i, str.toString(), res);
else if (l > 0) dfs(r, l - 1, i, str.toString(), res);
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
class Solution:
def __init__(self):
self.res = set()

def removeInvalidParentheses(self, s: str) -> List[str]:
left = right = 0

for ch in s:
if ch == '(':
left += 1
elif ch == ')':
if left == 0:
right += 1
else:
left -= 1
def dfs(num_left, num_right, remain_left, remain_right, index, row):
if index == len(s):
if num_left == num_right and remain_left == remain_right == 0:
self.res.add(row)
return
else:
if s[index] == '(':
if remain_left > 0: # remove (
dfs(num_left, num_right, remain_left - 1, remain_right, index + 1, row)
dfs(num_left + 1, num_right, remain_left, remain_right, index + 1, row + "(") # keep (
elif s[index] == ')':
if remain_right > 0:
dfs(num_left, num_right, remain_left, remain_right - 1, index + 1, row) # remove )
if num_right < num_left:
dfs(num_left, num_right + 1, remain_left, remain_right, index + 1, row + ')') # keep )
else: # keep other characters
dfs(num_left, num_right, remain_left, remain_right, index + 1, row + s[index])
dfs(0, 0, left, right, 0, "")
return list(self.res)

872. Leaf-Similar Trees

Leetcode: https://leetcode.com/problems/leaf-similar-trees/description/

[Solution]

  1. Use two stacks to traverse two trees
  2. If node is a leaf, return and compare it
  3. Compare the number of leaves of each trees
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
public boolean leafSimilar(TreeNode root1, TreeNode root2) {
Stack s1 = new Stack();
Stack s2 = new Stack();
s1.push(root1);
s2.push(root2);
while (!s1.empty() && !s2.empty()) { // traverse all the nodes
if (dfs(s1).val != dfs(s2).val) return false; // compare all the leaf nodes value
// continue comparing remaining leaf nodes
}
return s1.empty() && s2.empty(); // check if the number of leaves are the same
}

private TreeNode dfs(Stack s) {
while (true) {
TreeNode cur = (TreeNode)s.pop();

if (cur.left != null) s.push(cur.left);
if (cur.right != null) s.push(cur.right);

// leaf
if (cur.left == null && cur.right == null) return cur; // return leaf
}
}
}

DFS without tree

394. Decode String

Leetcode: https://leetcode.com/problems/decode-string/

[Solution]
Use a stack to store string and num pairs [[“”, num]]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution:
def decodeString(self, s: 'str') -> 'str':
stack = []
stack.append(["", 1])
repeat = ""

for ch in s:
if ch.isdigit():
repeat += ch
elif ch == '[':
stack.append(["", int(repeat)])
repeat = ""
elif ch == ']':
cur, k = stack.pop()
stack[-1][0] += cur * k
else:
stack[-1][0] += ch
return stack[0][0]

127. Word Ladder

Leetcode: https://leetcode.com/problems/word-ladder/

[Solution]

  • Construct a dictionary like below

    1
    {"*ot": ["hot", "lot"], "h*t": ["hot"],...}
  • Have a step tracking queue like below

    1
    [("hot", 1),...]
  • Have a visited set to remember visited words

Set() is much faster than list

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
def ladderLength(self, beginWord: str, endWord: str, wordList: List[str]) -> int:
D = {}
visited = set()
queue = deque([(beginWord, 1)])
for word in wordList:
perms = self.perms(word)
for perm in perms:
if perm not in D:
D[perm] = [word]
else:
D[perm].append(word)

while queue:
cur, step = queue.popleft()
if cur == endWord:
return step
for perm in self.perms(cur):
neibs = D.get(perm, [])
for neib in neibs:
if neib not in visited:
queue.append((neib, step + 1))
visited.add(neib)
return 0

def perms(self, word):
return [word[:i] + '*' + word[i+1:] for i in range(len(word))]

128. Longest Consecutive Sequence

Leetcode: https://leetcode.com/problems/longest-consecutive-sequence/
[Solution]

  • Have a visited set to remember visited nodes
  • Use a stack [[num, len]] to do DFS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
def longestConsecutive(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
visited = set()
if len(nums) == 0:
return 0
maxL = 1
for num in nums:
if num in visited:
continue
stack = [[num, 1]]
while stack:
cur, l = stack.pop()
# print(cur, l)
maxL = max(maxL, l)

neibs = [cur - 1, cur + 1]
for neib in neibs:
if neib in nums and neib not in visited:
if stack:
stack[0][1] += 1
stack.append([neib, l + 1])

visited.add(cur)
return maxL

Leetcode: https://leetcode.com/problems/word-search/

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
def exist(self, board: List[List[str]], word: str) -> bool:
def search(i, j, index):
# print(board[cur[0]][cur[1]], index, visited)
if i < 0 or i == len(board) or j < 0 or j == len(board[0]) or index == len(word) or board[i][j] != word[index]:
return False
if index == len(word) - 1 and board[i][j] == word[index]:
return True

temp = board[i][j]
board[i][j] = "#"

if search(i - 1, j, index + 1) or search(i + 1, j, index + 1) or search(i, j + 1, index + 1) or search(i, j - 1, index + 1):
return True

board[i][j] = temp
return False

for i in range(len(board)):
for j in range(len(board[0])):
if search(i, j, 0):
return True
return False

332. Reconstruct Itinerary

Leetcode: https://leetcode.com/problems/reconstruct-itinerary/

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
def findItinerary(self, tickets: List[List[str]]) -> List[str]:
graph = {}
for ticket in tickets:
if ticket[0] in graph:
graph[ticket[0]].append(ticket[1])
else:
graph[ticket[0]] = [ticket[1]]
if ticket[1] not in graph:
graph[ticket[1]] = []
for t in graph:
graph[t].sort(reverse = True)
stack = ['JFK']
res = []
while stack:
while graph[stack[-1]]:
stack.append(graph[stack[-1]].pop())
res.append(stack.pop())
return res[::-1]

399. Evaluate Division

Leetcode: https://leetcode.com/problems/evaluate-division/

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
def calcEquation(self, equations: List[List[str]], values: List[float], queries: List[List[str]]) -> List[float]:
graph = {} # {a: {b: 2}, b: {c: 3, a: 0.5}, c: { b: 1/3}}
for i in range(len(equations)):
if equations[i][0] in graph:
children = graph[equations[i][0]]
children[equations[i][1]] = values[i]
else:
graph[equations[i][0]] = {equations[i][1]: values[i]}
if equations[i][1] in graph:
children = graph[equations[i][1]]
children[equations[i][0]] = 1 / values[i]
else:
graph[equations[i][1]] = {equations[i][0]: 1 / values[i]}
res = []

def calculate(x, y):
visited = set()
stack = [(x, 1.0)]
while stack:
cur, times = stack.pop()
visited.add(cur)
if cur == y:
return times
neibs = graph[cur]
for nb in neibs:
if nb not in visited:
stack.append((nb, times * neibs[nb]))
return -1.0

for query in queries:
# x / y
if query[0] not in graph or query[1] not in graph:
res.append(-1.0)
else:
res.append(calculate(query[0], query[1]))
return res

329. Longest Increasing Path in a Matrix

Leetcode: https://leetcode.com/problems/longest-increasing-path-in-a-matrix/

Solution 1: Naive DFS (TLE)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
def longestIncreasingPath(self, matrix: List[List[int]]) -> int:
if not matrix or not matrix[0]:
return 0
self.res = 0
def dfs(path, visited, prev, i, j):
if (i, j) in visited or i < 0 or j < 0 or i == len(matrix) or j == len(matrix[0]) or (prev and matrix[i][j] <= prev):
return
if matrix[i][j] == prev:
return
prev = matrix[i][j]
path.append(prev)
self.res = max(self.res, len(path))
visited.add((i, j))
dfs(path, visited,prev, i + 1, j)
dfs(path, visited,prev, i - 1, j)
dfs(path, visited,prev, i, j + 1)
dfs(path, visited,prev, i, j - 1)
path.pop()
visited.remove((i, j))

for i in range(len(matrix)):
for j in range(len(matrix[0])):
dfs([], set(), None, i, j)
return self.res

Optimize: Memoization

Note:

  • Use a cache matrix to remember if we’ve already calculated the current cell
  • If so, directly return that from cache
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
def longestIncreasingPath(self, matrix: List[List[int]]) -> int:
if not matrix or not matrix[0]:
return 0
cache = [[0 for j in range(len(matrix[0]))] for i in range(len(matrix))]
self.res = 0
def dfs(visited, prev, i, j, maximum, cache):
if (i, j) in visited or i < 0 or j < 0 or i == len(matrix) or j == len(matrix[0]) or (prev and matrix[i][j] <= prev):
return 0
if matrix[i][j] == prev:
return 1
if cache[i][j] != 0:
return cache[i][j]
prev = matrix[i][j]
maximum += 1
visited.add((i, j))
res = max([dfs(visited, prev, i + 1, j, maximum, cache),
dfs(visited,prev, i - 1, j, maximum, cache),
dfs(visited,prev, i, j + 1, maximum, cache),
dfs(visited,prev, i, j - 1, maximum, cache)]) + 1
cache[i][j] = max(cache[i][j], res)
visited.remove((i, j))
maximum -= 1
return cache[i][j]
res = 0
for i in range(len(matrix)):
for j in range(len(matrix[0])):
res = max(res, dfs(set(), None, i, j, 0, cache))
return res